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Infection by SARS-CoV-2 requires membrane fusion between 
the viral envelope and the host cell, at either the cell surface 
or the endosomal membrane. The fusion process is mediated 
by the viral transmembrane spike glycoprotein (S). Upon vi-
ral attachment or uptake, host factors trigger large-scale con-
formational rearrangements in S, including a refolding step 
that leads directly to membrane fusion and viral entry (1–3). 
Peptides corresponding to the highly conserved heptad re-
peat (HR, Fig. 1A) domain at the C terminus of the S protein 
(HRC peptides, Fig. 1B) can prevent this refolding and inhibit 
fusion, thereby preventing infection (4–8). The HRC peptides 
form six-helix bundle-like assemblies with the extended in-
termediate form of the S protein trimer, disrupting the struc-
tural rearrangement of S that drives membrane fusion (4) 
(see also movie S1). 

Our approach in designing SARS-CoV-2 S-specific fusion 
inhibitors builds on our previous work that demonstrated 
that lipid conjugation of HRC-derived inhibitory peptides 
markedly increases antiviral potency and in vivo half-life (9, 
10). These peptides successfully inhibit human parainfluenza 
virus type 3 (HPIV-3), measles virus, influenza virus, and 
Nipah virus infection (9, 11–13). Furthermore, the 

combination of dimerization and lipopeptide integration into 
cell membranes protects the respiratory tract and prevents 
systemic lipopeptide dissemination (14). Lipid-conjugated 
peptides administered intranasally to animals reached high 
concentrations both in the upper and lower respiratory tract, 
and the lipid could be designed to modulate the extent of 
transit from the lung to the blood and organs (9, 14). We pro-
pose a SARS-CoV-2 specific lipopeptide as a candidate antivi-
ral for pre-exposure and early post-exposure prophylaxis for 
SARS-CoV-2 transmission in humans. 

We recently described a monomeric SARS-CoV-2 HRC-
lipopeptide fusion inhibitor (4) against SARS-CoV-2 with in 
vitro and ex vivo efficacy superior to previously described 
HRC-derived fusion inhibitory peptides (6, 7). To further im-
prove antiviral potency, we compared monomeric and di-
meric HRC-peptide derivatives (Fig. 1C). Figure 1D shows 
antiviral potency in a quantitative cell-cell fusion assay of 
four monomeric and two dimeric SARS-CoV-2 S-derived 36-
amino acid HRC-peptides (Fig. 1B, see also figs. S1A and S3 
for structure and characterization), without or with ap-
pended cholesterol. Dimerization increased the peptide po-
tency for both non-lipidated peptides and their lipidated 
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Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is 
initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike 
protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection, and 
based on in vitro efficacy and in vivo biodistribution selected a dimeric form for evaluation in an animal 
model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact 
transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in 
infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate 
into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2. on F
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counterparts (Fig. 1D). A dimeric cholesterol-conjugated 
lipopeptide based on the HPIV-3 F protein HRC domain, used 
as a negative control, did not inhibit fusion at any concentra-
tion tested (black line in Fig. 1D, see fig. S1, B and C, for ad-
ditional negative controls). Among the monomeric 
lipopeptides, the peptide bearing PEG24 was most potent. The 
dimeric cholesterol-conjugated peptide ([SARSHRC-PEG4]2-
chol; red line in Fig. 1D) was the most potent lipopeptide 
against SARS-CoV-2 among our panel. This peptide also ro-
bustly inhibited fusion mediated by the S proteins of several 
emerging SARS-CoV-2 variants [including D614G (15)], the 
recent variants of concern B.1.1.7 and B.1.351 (16, 17) and the 
S protein of SARS-CoV and MERS-CoV (Fig. 1E). Proposed an-
choring of the dimeric lipopeptide in the host cell membrane 
and interactions with the viral S protein are shown in fig. S2 
and movie S1. Collectively, these data suggest that the 
[SARSHRC-PEG4]2-chol lipopeptide is equipped to combat an 
evolving pandemic. 

For other enveloped respiratory viruses, we previously 
showed that both ex vivo and in vivo dimeric lipopeptides 
(administered intranasally) displayed increased retention in 
the respiratory tract compared to monomeric compounds 
(14). Here, we compared local and systemic biodistribution of 
our most potent monomeric and dimeric lipopeptides 
(SARSHRC-PEG24-chol and [SARSHRC-PEG4]2-chol) at 1, 8, and 
24 hours after intranasal inoculation or subcutaneous injec-
tion in humanized K18 hACE2 mice (Fig. 2 and fig. S4). The 
two lipopeptides reached a similar lung concentration at 1 
hour after intranasal administration (~1 to 2 μM). At 8 and 
24 hours, the dimeric [SARSHRC-PEG4]2-chol lipopeptide re-
mained at high levels in the lung with minimal entry into the 
blood, but the monomeric peptide entered the circulation 
and the lung concentration decreased (Fig. 2A). The dimeric 
[SARSHRC-PEG4]2-chol lipopeptide was distributed through-
out the lung after intranasal administration (Fig. 2B). A cel-
lular toxicity (MTT) assay in primary HAE cells showed 
minimal toxicity even after 6 days at the highest concentra-
tions tested (<20% at 100 μM), and no toxicity at its IC90 entry 
inhibitory concentrations (~35 nM) (fig. S5). The longer res-
piratory tract persistence of [SARSHRC-PEG4]2-chol, in concert 
with its in vitro efficacy, led us to advance this dimeric 
lipopeptide. 

The lead peptide, [SARSHRC-PEG4]2-chol, was assessed for 
its ability to block entry of SARS-CoV-2 in VeroE6 cells or 
VeroE6 cells overexpressing the protease TMPRSS2, one of 
the host factors thought to facilitate viral entry at the cell 
membrane (2). Whereas viral fusion in VeroE6 cells predom-
inantly occurs after endocytosis, the virus enters TMPRSS2-
overexpressing cells by fusion at the cell surface, reflecting 
the entry route in airway cells (18). This difference is high-
lighted by chloroquine’s effectiveness against SARS-CoV-2 in-
fection in Vero cells but failure in TMPRSS2-expressing Vero 

cells and human lung (19). The [SARSHRC-PEG4]2-chol peptide 
dissolved in an aqueous buffer containing 2% dimethylsulfox-
ide (DMSO) inhibited virus entry after 8 hours with an IC50 
~300 nM in VeroE6 and ~5 nM in VeroE6-TMPRSS2 cells 
(Fig. 3A). To strengthen translational potential toward hu-
man use, the lipopeptide was reformulated in sucrose instead 
of DMSO, resulting in equivalent in vitro potency (Fig. 3B). A 
control dimeric fusion-inhibitory lipopeptide directed 
against HPIV-3 blocked infection by HPIV-3, but did not in-
hibit SARS-CoV-2 infection. The in vitro efficacy data are 
summarized in table S1. 

Ferrets are an ideal model for assessing respiratory virus 
transmission, either by direct contact or by aerosol transmis-
sion (20, 21). Mustelids are highly susceptible to infection 
with SARS-CoV-2, as also illustrated by frequent COVID-19 
outbreaks at mink farms. Direct contact transmission of 
SARS-CoV in ferrets was demonstrated in 2003 (22), and both 
direct contact and airborne transmission have been shown in 
ferrets for SARS-CoV-2 (20, 23). Direct contact transmission 
in the ferret model is highly reproducible (100% transmission 
from donor to acceptor animals), but ferrets display limited 
clinical signs. After infection via direct inoculation or trans-
mission, SARS-CoV-2 can readily be detected in and isolated 
from the throat and nose, and viral replication leads to sero-
conversion. 

To assess the efficacy of [SARSHRC-PEG4]2-chol in prevent-
ing SARS-CoV-2 transmission, naïve ferrets were dosed 
prophylactically with the lipopeptide before being co-housed 
with SARS-CoV-2 infected ferrets. In this setup, transmission 
via multiple routes can theoretically occur (aerosol, orofecal, 
and scratching or biting), and ferrets are continuously ex-
posed to infectious virus during the period of co-housing, 
providing a stringent test for antiviral efficacy. The study de-
sign is shown in fig. S6. Three donor ferrets (gray in diagram) 
were inoculated intranasally with 5 × 105 TCID50 SARS-CoV-2 
on day 0. Twelve recipient ferrets housed separately were 
treated by nose drops with a mock preparation (red) or 
[SARSHRC-PEG4]2-chol peptide (green) 1 and 2 days post-inoc-
ulation (DPI) of the donor animals. The [SARSHRC-PEG4]2-chol 
peptides for intranasal administration were dissolved to a 
concentration of 6 mg/ml in an aqueous buffer containing 2% 
DMSO, administering a final dose of 2.7 mg/kg to ferrets  
(450 μl, equally divided over both nostrils). Peptide stocks 
and working dilutions had similar IC50’s, confirming that pep-
tide-treated ferrets were dosed daily with comparable 
amounts (fig. S7, A and B). Six hours after the second treat-
ment on 2 DPI, one infected donor ferret (highly positive for 
SARS-CoV-2 by RT-qPCR) was co-housed with four naïve re-
cipient ferrets (two mock-treated, two peptide-treated). After 
a 24-hour transmission period in three separate, negatively 
pressurized HEPA-filtered ABSL3-isolator cages, co-housing 
was stopped and donor, mock-treated and peptide-treated 
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ferrets were housed as separate groups. Additional [SARSHRC-
PEG4]2-chol peptide treatments were given to recipient ani-
mals on 3 and 4 DPI. 

The viral loads (detection of viral genomes via RT-qPCR) 
for directly inoculated donor animals (gray), mock-treated re-
cipient animals (red) and lipopeptide-treated recipient ani-
mals (green) are shown in Fig. 4, A and B. All directly 
inoculated donor ferrets were productively infected, as 
shown by SARS-CoV-2 genome detection in throat and nose 
swabs, and efficiently and reproducibly transmitted the virus 
to all mock-treated acceptor ferrets (Fig. 4, A and B, red 
curves). Productive SARS-CoV-2 infection was not detected in 
the throat or nose of any of the peptide-treated recipient an-
imals (Fig. 4, A and B, green curves). A slight rise in viral 
loads in samples collected at 3 DPI was detected (at the end 
of the co-housing), confirming that peptide-treated animals 
were exposed to SARS-CoV-2. In Fig. 4C the area under the 
curve (AUC) shows the striking difference between the mock 
treated and the peptide treated animals. No infectious virus 
was isolated from lipopeptide-treated ferrets, while infectious 
virus was detected in all mock-treated ferrets (Fig. 4D). Virus 
isolation data correlated with genome detection (Fig. 4E). 

Seroconversion occurred in donor ferrets and 6/6 mock-
treated animals by 21 DPI, but in none of the peptide-treated 
recipient animals, as shown by S- and N-specific IgG enzyme-
linked immunosorbent assay (ELISA) and virus neutraliza-
tion (Fig. 4, F to H). Successful challenge infection confirmed 
that in-host virus replication had been completely blocked by 
the [SARSHRC-PEG4]2-chol treatment (Fig. 4I and fig. S8) and 
that none of the peptide-animals were protected, whereas the 
mock-treated animals (which had seroconverted) were all 
protected. Collectively, these data show that intranasal 
prophylactic administration of the [SARSHRC-PEG4]2-chol 
peptide had protected 6/6 ferrets from transmission and pro-
ductive infection. 

In light of the persistence of the dimeric lipopeptide in 
the murine lung (Fig. 2 and fig. S4), we assessed the potential 
for a single administration of sucrose-formulated lipopeptide 
in a ferret transmission experiment two hours before co-
housing to prevent or delay infection. In this experiment, we 
used a dimeric HPIV-3-specific lipopeptide as mock control 
(fig. S9). Although sucrose formulation had resulted in prom-
ising results in vitro at small scale (Fig. 3B), formulation at 
larger scale resulted in incomplete dissolution. As a conse-
quence, the sucrose-formulated [SARSHRC-PEG4]2-chol 
lipopeptide was administered at a substantially lower con-
centration than in the experiment with the DMSO-
formulated lipopeptide (fig. S7, C and D). Nevertheless, the 
SARS-CoV-2 lipopeptide provided a significant level of pro-
tection as compared to the HPIV-3 control group, and four 
out of six SARS-CoV-2 lipopeptide-treated animals were pro-
tected against infection. This experiment suggests that single-

administration pre-exposure prophylaxis is promising, while 
the optimal formulation and dosing regimen is an area of on-
going experimentation. 

The intranasal [SARSHRC-PEG4]2-chol peptide presented in 
this study is the first successful prophylaxis that prevents 
SARS-CoV-2 transmission in a relevant animal model, provid-
ing complete protection during a 24-hour period of intense 
direct contact. Parallel approaches to prevent transmission 
that target the interaction between S and ACE2 have shown 
promise in vitro [e.g., the “miniprotein” approach (24)]. The 
lipopeptide described here acts on the S2 domain after shed-
ding of S1 (fig. S2 and movie S1), and is complementary to 
strategies that target S1’s functions or maintain S in its pre-
fusion conformation, e.g., synthetic nanobodies (25, 26). Fu-
sion-inhibitory lipopeptides could be used for pre- and post-
exposure prophylaxis in combination with these strategies, 
and in conjunction with treatments [e.g., ribonucleoside an-
alogs (27)] that reduce replication in a treated infected indi-
vidual. A combination of drugs that target different aspects 
of the viral life cycle is likely ideal for this rapidly-evolving 
virus. Of note, the [SARSHRC-PEG4]2-chol lipopeptide is 
equally active against several emerging SARS-CoV-2 variants 
including the D614G as well as the recent variants of concerns 
(B.1.1.7 and B.1.351). The [SARSHRC-PEG4]2-chol peptide has a 
long shelf life, does not require refrigeration and can easily 
be administered, making it particularly suited to treating 
hard-to-reach populations. This is key in the context of 
COVID-19, which has reached every community with the bur-
den falling disproportionately on low-income and otherwise 
marginalized communities. This HRC lipopeptide fusion in-
hibitor is feasible for advancement to human use and should 
readily translate into a safe and effective nasal spray or inha-
lation administered fusion inhibitor for SARS-CoV-2 prophy-
laxis, supporting containment of the ongoing COVID-19 
pandemic. 
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Fig. 1. Peptide-lipid conjugates that inhibit SARS-CoV-2 spike (S)–mediated fusion. 
(A) The functional domains of SARS-CoV-2 S protein: receptor-binding domain (RBD) 
and heptad repeats (HRN and HRC) are indicated. (B) Sequence of the peptides derived 
from the HRC domain of SARS-CoV-2 S. (C) Monomeric and dimeric forms of lipid 
tagged SARS-CoV-2 inhibitory peptides that were assessed in cell-cell fusion assays. 
(D) Cell-cell fusion assays with different inhibitory peptides. The percentage inhibition 
is shown for six different SARS-CoV-2-specific peptides and a control HPIV-3-specific 
peptide at increasing concentrations. Percent inhibition was calculated as the ratio of 
the relative luminescence units in the presence of a specific concentration of inhibitor 
and the relative luminescence units in the absence of inhibitor, corrected for 
background luminescence. % inhibition = 100 × [1 − (luminescence at X − 
background)/(luminescence in absence of inhibitor − background)]. The difference 
between the results for [SARSHRC-PEG4]2-chol and SARSHRC-PEG4-chol lipopeptides was 
statistically significant (two-way ANOVA, P < 0.0001). (E) Fusion inhibitory activity of 
[SARSHRC-PEG4]2-chol peptide against emerging SARS-CoV-2 S variants, MERS-CoV-2 
S, and SARS-CoV S. Data in (D) and (E) are means ± standard error of the mean (SEM) 
from three separate experiments with the curve representing a four-parameter dose-
response model. 
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Fig. 2. Biodistribution of [SARSHRC-PEG4]2-chol and 
SARSHRC-PEG24 peptides after intranasal administration 
to mice. (A) The concentration of lipopeptides (y axis) was 
measured by ELISA in lung homogenates and plasma 
samples (peptide-treated n = 3 to 4, mock n =1). Median is 
indicated by horizontal bar. (B) Lung sections of [SARSHRC-
PEG4]2-chol-treated (or vehicle-treated) mice were stained 
with anti-SARS-HRC antibody (red) confirming broad 
distribution of [SARSHRC-PEG4]2-chol in the lung (8 hours 
post-inoculation, 8HPI). Scale bar = 500 μm in lung tile scan, 
50 μm in magnification, representative images and a full tile 
scan are shown. Nuclei were counterstained with DAPI 
(blue). 
 

Fig. 3. Inhibition of infectious SARS-CoV-2 entry by [SARSHRC-PEG4]2-
chol and [HPIV-3HRC-PEG4]2-chol peptides. (A and B) The percentage 
inhibition of infection is shown on VeroE6 and VeroE6-TMPRSS2 cells 
with increasing concentrations of [SARSHRC-PEG4]2-chol (red lines) and 
[HPIV-3HRC-PEG4]2-chol (gray lines). DMSO-formulated (A) and sucrose-
formulated stocks (B) were tested side-by-side. Mean ± SEM of 
triplicates are shown, dotted lines show 50% and 90% inhibition. 
Additionally, the potency of [HPIV-3HRC-PEG4]2-chol was confirmed by 
inhibition of infectious HPIV-3 entry (dotted green lines, performed on 
Vero cells). 
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Fig. 4. [SARSHRC-PEG4]2-chol prevents SARS-CoV-2 transmission in 
vivo. (A and B) Viral loads detected in throat (A) and nose (B) swabs by 
RT-qPCR. (C) Comparison of the area under the curve (AUC) from 
genome loads reported in B for mock- and peptide-treated sentinels.  
(D) Viral loads detected in throat swabs by virus isolation on VeroE6.  
(E) Correlation between viral loads in the throat as detected via RT-qPCR 
and virus isolation. Presence of anti-S (F) or anti-N (G) antibodies was 
determined by IgG ELISA assay. Presence of neutralizing antibodies was 
determined in a virus neutralization assay (H). Virus neutralizing 
antibodies are displayed as the endpoint serum dilution factor that 
blocks SARS-CoV-2 replication. Direct inoculation of peptide-treated or 
mock-treated animals with SARS-CoV-2 led to productive infection in 
only the previously peptide-treated animals (I), in the absence of S-
specific, N-specific and neutralizing antibodies. Donor animals shown in 
gray, mock-treated animals in red, peptide-treated animals in green. 
Symbols correspond to individual animals (defined in fig. S6). Line 
graphs in (A), (B), (D), and (F) to (I) connect the median of individual 
animals per time point. Mock- and peptide-treated groups were 
compared via two-way ANOVA repeated measures [(A), (B), and (F) to 
(I)] or Mann-Whitney test (C). 
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